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illia . Cooke

Abstract Evaluation of Procedures

The U.S. Depattment  of Agriculture, Forest Setvice,  Southern Research
Station, appointed  a remote-sensing team to develop an image-processing
methodology for mapping forest lands over large geographic areas. The
team has presented a repeatable methodology, which is based on regression
modeling of Advanced Vety High Resolution Radiometer and Landsat
Thematic Mapper  data. It is a methodology that Forest lnventoty  and
Analysis survey personnel can implement in any region or area. The term
repeatable implies objectivity. Studies in the contenninous United States,
Central America and Mexico, and west Texas and Oklahoma have
provided valuable insights that address the subjective nature ofsome  ofthe
steps taken in mapping large forest areas. The team  has identified seven
such steps. They have reduced or eliminated subjectivity in four ofthe
steps and identitied two steps in which ob.jectivity can be enhanced.

Keywords: AVHRR, ecoregions, FIA, Landsat,  regression modcling,
remote sensing.

Introduction

Lillesand and Kiefer (1987) defined remote sensing as the
science and art  of  obtaining information about an object ,
area, or phenomenon. Their use of the term art raises
quest ions about  the rel iabi l i ty  and repeatabi l i ty  of  remote
sensing.  For various purposes,  including compliance with
the Forest  and Rangeland Renewable Resources Planning
Act (RPA), periodic updates of forest  inventories of the
United States are necessary. To help ensure those updates
are accomplished,  the Southern Research Station Forest
Inventory and Analysis  (FIA) remote-sensing team is
developing methodologies that  remove some of  the
subject ivi ty,  or  ar t ,  f rom the modeling process.

Zhu and Evans (  1994) modeled percent forest  canopy for the
conterminous United States from Advanced Very High
Resolution Radiometer (AVHRR) data that were based on
calibration of Landsat  Thematic Mapper (TM) data. In
Mexico and Central America, Lannom and others ( 1995)
made an effort to repeat and improve on their model.
Current research focuses on application and additional
refinement of this model in the semiarid and arid regions of
Texas and Oklahoma. The evolution of a procedure to
analyze AVHRR data for large-area analyses is described in
this  publ ica t ion .

Phase I-Initial Modeling Efforts for RPA

Zhu and Evans (  1994) used AVHRR and TM data to model
percent forest cover. The resul t ing maps displayed
approximate percent forest cover per AVHRR pixel. Those
pixels that had forest cover percentages above a certain
minimum threshold value were classif ied by forest  type.
Generally, to be classified as forest, an area’s within-pixel
forest-cover had to be 20 percent or greater. Data for United
States forest types and percent cover are now available on
CD-ROM at the USDA Forest Service FIA office in
Starkvil le,  MS, and on the World Wide Web at  http:il
www.srsfia.usfs.  msstate.edu.  The team has distributed
about 200 of the CD-ROM’s to organizations and
individuals and over 25,000 of the hard-copy map Forest
l)pe  Groups of the United States (fig. 1). The team
compared, by State, forest-area percentages derived from
FIA survey data in the 1993 RPA with the AVHRR forest-
type group map. They determined that forest area from the
AVHRR data in the conterminous United States had been
overestimated by 1.95 percent when compared to FIA survey
data. Comparisons are illustrated in table 1 (Zhu 1994).

The modeling efforts used to create the Forest  Type Groups
qf the United States  map rel ied on mult iple regression
procedures.  Regression models that were used to predict
percent forest  canopy were developed in part  by classifying
Landsat  TM scenes to forest  types,  then aggregating those
types into forest  and nonforest  classes.  Landsat  TM scenes
were chosen on the basis  of  their  location within
physiographic regions.  Zhu used a combination of
Hammond’s Classes  ofLnndSwf&x~  Form and Fenneman’s
Physical Divisions of the United States  to locate Landsat
TM scenes (Hammond 1964, Fenneman and Johnson 1946).

Model development required that  the team choose
cal ibrat ion windows common to both the Landsat  TM and
AVHRR data sets.  These windows were considered to be
representative of land-cover condit ions within the
physiographic regions.  Advanced Very High Resolution
Radiometer channels,  channel transformations,  and
temporally separated channels became the independent
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(predictor) variables. The dependent (predicted) variable was
the percent forest  canopy within the calibration window that
was derived  from the 1,andsat  TM classification.

The selection of independent variables was based on an all-
possible-combinations approach. Advanced Very High
Resolution Radiometer  channels  and channel  t ransformations
const i tuted the pool  of  possible independent  variables.  The
process of evaluating potential  independent variables
included a simple correlat ion analysis  with the forest
percentage variable, a test of colinearity among the AVHRR

bands,  and l inear  models  for  al l  possible combinations of  the
AVHRR bands.  Combination models were tested,  and
models were chosen on the basis  of  highest  R’ among
different  levels  of  independent variable combinations.

Figure 2 i l lustrates  essent ia l  s teps of  the model ing
methodology.  Statements in brackets ,  e .g. ,  <Part i t ioning
System>, denote s teps at  which subject ive decision making
must occur before the analyst  proceeds to the next step.
Within the methodology i l lus t ra ted in  f igure  2 ,  subject ivi ty  is
present at  several steps,  each of which will  require closer
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examination: (1) choice of a landscape part i t ioning system;
(2) location of TM scenes within the partitions; (3) class-
labeling process for TM classifications; (4) number, size,
and location of calibration windows; (5) independent-
variable selection process; (6) choice of a percent forest
canopy threshold;  and (7) class-labeling process for AVHRR
classif icat ion.

Choice of a landscape partitioning system-Landscape
divis ions may be based on changes in  soi ls ,  physiography,
climatic zones, elevation, and ecoregions, to name just a few.
Choosing the most  applicable landscape-part i t ioning system
to determine land-cover classes and generate the digital  data
products necessary for study is a critical step. Jensen (1986)
notes the general  agreement that  spectral  signatures used in
automated classification procedures become less
representative of actual  land-cover condit ions when those
stat ist ical  signatures are extrapolated over large distances.

Zhu (1994) used geographic data part i t ioning to reduce
spectral  variat ions among regional  physiographic or
ecosystem condit ions and to emphasize spectral  variat ions
among local vegetation types. His choice of Fenneman’s
and I-iammond’s  combined physiographic regions was purely
subjective.  IIe also considered using Powell’s  physiographic
regions and Lobeck’s  physiographic provinces.

Location of TM scenes with partitions-Because a
statist ical  signature becomes less representative of a land-
cover class extrapolated over great distances (Jensen 1986)
the analyst  must carefully choose the location of TM scenes
within each part i t ion.  Should TM scenes be chosen at
parti t ion boundaries,  or should they be near the center of the
area partitioned‘?

Class-labeling for TM classification-The analyst’s
knowledge of the geographic area and his or her access to
reference imagery or photography and ground-verification
information are critical. Class labeling is the assignment of
names to the classes produced during the automated
classification procedure. Reclassification or combinations
of some classes may be necessary. Once labels have been
assigned, classes are combined as forest  or nonforest .  At
this  s tep,  dist inct ions between land use and land cover
become important. For example, the image analyst’s
automated classif icat ion process may not  enable
differentiation between a clearcut  and agricultural  bare-soil
condi t ions . If an analyst determines that an area will be
replanted or allowed to revert  to some natural  forest
condition, survey personnel in the field will classify a clear-
cut as forest land. Conversely, if automated classification

procedures were followed, both would probably be classified
as bare soi l .

Number, size, and location of calibration windows-The
modeling process uses high-resolution data (TM) to predict
percent forest  canopy in areas for which low-resolution data
(AVHRR) are available. To accomplish that, the analyst
chose calibration windows over geographic areas common to
both data sets .  Those data serve as input for  the modeling
process,  so the analyst  chooses windows that  are
representative of actual land-cover conditions,  as well  as the
number size, and location of those windows. If they are too
small, TM and AVHRR coregistration errors may be a
problem; if  they are too large,  s tat ist ical  calculat ions may be
extremely slow and file storage requirements may be
difficult. The same concerns apply to the number of
windows chosen to represent forest  and nonforest  classes.  If
calibration windows are too few, land-cover condit ions may
not be adequately sampled; if  too many, performance and
storage problems may occur. Therefore, the location of
calibration windows should maximize information content
while minimizing number and location.

Selecting independent variables-Zhu (1994) used an all-
possible-combinations approach to independent  variable
select ion.  Although this  is  the only method guaranteed to
find  the best model, it requires fitting  2k  -1 models (k = the
number of variables).  I ts  disadvantages are computational
ineff iciency and the amount of  t ime the scient is t  must  spend
assessing correlat ion matrices for  al l  possible independent
variable combinations. Other approaches include forward
selection,  backward elimination,  and stepwise  independent
variable selection. These are automated procedures that
quickly f ind the best  possible  combinat ion of  independent
variables.  One disadvantage of automated variable selection
routines is  that  they are designed to give one answer without
displaying the resul ts  on a large number of  subset  models
(Myers 1990). It is also possible that the truly best model
may not survive any of the automated procedures.  Myers
(  1990) recommends automated independent variable
selection when there is a large number of potential
independent variables.

Choice of percent forest-cover threshold-The model
produces an AVHRR image wherein each pixel  represents a
percentage of forest cover.  Subsequent automated land-
cover classifications of AVHRR data forest-type mapping are
made for pixels that exceed some minimum percentage of
forest  cover,  which the analyst  chooses.  Comparisons of
forest-area estimates based on Zhu and Evans’ (1994) work
with FIA field-plot data are shown in table 1. Choice of the

5



percent forest-canopy threshold directly affects such
comparisons.

Class-labeling for AV classifications-The concerns
about class labeling for  TM classif icat ions (step 3)  also
apply to labeling AVHRR classifications. Whereas class
labeling for TM classification efforts can sometimes be
applied at the species level, class labeling for AVHRR
classification efforts generally is applied at the major forest-
type group level. The AVHRR class labeling process
requires that  t h e  analyst  is  familiar  with ecosystem processes
that  operated at  the landscape level and also has a basic
understanding of  the distr ibut ion of  forest- type groups
associated with these processes.

hase II-Application of
exico and Central America

ues in

The U.S. Agency for International Development (USAID)
funded a land-cover classification study for Mexico and
Central America, which provided an opportunity to replicate
and improve modeling methodologies. The study resulted in
valuable refinements to the modeling process.

Choice of a landscape part i t ioning system was subjective;
therefore,  no improvement was made in step 1 of the
process.

The location of TM scenes was detemnned primarily by the
availability of cloud-free imagery. In many parts of the
world,  persistent  cloud cover prevents the acquisi t ion of TM
data in areas that are optimum for modeling purposes.
Wherever possible, cloud-free TM scenes were recorded in
or near the center of ecoregions,  which allows the analyst to
reduce problems tied to signature extrapolation. As greater
geographic distances are traversed, land-cover class means
and standard deviations may change. If  TM scenes are
acquired near the center of an ecoregion, forest-class means
and standard deviations are more l ikely to be representative
of the population for that region. However, the analyst
should careful ly weigh this  conclusion against  the
appropriateness of  the part i t ioning system for the forest  or
land-cover class. If  t ime and budget  constraints  prevent the
acquisi t ion of a sufficient  number of TM scenes to cover
each ecoregion, they can be obtained between ecoregions.

The class-labeling process for Mexico and Central  America
points out a weakness in the methodology. Field visits to
foreign countries are expensive, and reference data are often
inaccurate or unavailable.  Whenever possible,  the analyst
should closely involve an understudy expert  that  is  famil iar

with local  vegetat ion types in the TM class- label ing process.
The analyst  can then either classify TM scenes on location
and send resul ts  to  the SRS remote sensing team for
modeling,  or experts can travel to the data processing
locat ion.

The team tested the number,  size,  and location of calibration
windows, al though those tests  were inconclusive.  Mayaux
and Lambin  ( 1995) found that in tropical areas, a minimum
13 by 13 AVHRR pixel window minimizes coregistration
problems. The team developed a new technique that
significantly improved coregistration ofcalibration windows
for the AVHRR and Landsat  TM data sets-one that helps
ensure the precise comer pixels. The ability to precisely
locate corner pixels will, in turn, increase the probability of
modeling success i f  the analyst  selects  numerous small
calibration windows rather than a few large ones.

The team developed automated routines for importing cell
values from calibrat ion windows into the stat is t ical  software.
Once cell values have been exported from the image
processing system in ASCII format,  these routines reformat
the data into data frames appropriate to the S-Plus’  stat is t ical
software.  Although these routines do not  specif ical ly
address an area of subjectivity,  they indirectly impact
subject ive processes by enabling scientists  to al locate more
t ime to areas  of  subject ivi ty .

Stepwise  independent-variable selection procedures were
used for this study. Automated variable selection procedures
have both strengths and weaknesses.  Speed is  an obvious
strength of forward and backward automated selection
procedures. Stepwise  selection is a modification of the
forward selection technique that permits reexamination of
the variables incorporated into or dropped from the model in
earlier steps. A partial F-test for each variable is computed
as though i t  was the most recent variable entered.  This
technique is  a good compromise between the calculat ion
inefficiency of the al l-possible-combinations approach; and
the forward or backward selection techniques are chosen
str ict ly on the basis  of  their  computat ional  eff iciency.

The analyst arbitrarily chose the percent forest-canopy
threshold values.  Comparisons of the percent forest  area
map (fig. 3) with forest-cover maps (where available)
formed the basis for the threshold value choice.  As a result ,
the analyst  did not  reduce subject ivi ty at  this  s tage in the
model ing process .

Labeling of  the AVHRR classif icat ions fol lowed conventions
established for major forest- type groups in Mexico and
Central America. The requirement that forest-type groups fit
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categories determined npriori is a major complication at this
stage. Fitting the classes to predetermined categories
implies that  these categories (major forest- type groups)
actually exist  on the landscape at  the AVHRR data resolution
(l-km pixels).

The modeling process is  now complete,  and the project
manuscript “Forest Mapping of Central America and Mexico
with AVHRR Data,” has been accepted for publication by
Geo Carta International. The forest-type maps for Mexico
and Central America have been completed and are available
from the USDA Forest Service, Southern Research Station,
10 1 -A G.T. Thames Drive, Starkville, MS 39759.

Phase III-Application of Modeling Techniques in the
Semiarid and Arid Regions of West Texas and West
Oklahoma

The SRS remote sensing team further refined the modeling
process in west Texas and Oklahoma, incorporating
methodological improvements made in earlier studies. The
team’s primary focus in this  s tudy concerned the choice of  a
landscape part i t ioning system, a choice that  impacts  the
entire methodology.  Zhu (  1994) used geographic data
part i t ioning to reduce spectral  variat ions among regional
physiographic or  ecosystem condit ions and to emphasize
spectral  variations among local vegetation types.  Spectral
variat ions among different  regional  condit ions are
minimized if the landscape partitioning system accurately
reflects forest-cover condit ions.

The team has completed quantitat ive tests of the general
effectiveness of part i t ioning and has presented i ts  f indings at
the Sixth Forest Service Biennial Conference of Remote
Sensing (Cooke 1996). Calculation of Jeffries-Matusita
(J-M) distances for woody and nonwoody  vegetat ion
spectral  classes was the basis  of  the quanti tat ive tests .  The
J-M test  measures the distance (separation) between the
means and variances of spectral  classes to determine their
stat ist ical  “uniqueness.” The team tested pixels representing
all woody and nonwoody  areas within each adjacent pair of
landscape partitions. In that complete enumeration of the
pixel  populat ion,  the team found that  landscape part i t ioning
using Bailey’s  ecoregions improved the dist inct ion between
woody and nonwoody  vegetation. Figure 4 illustrates
Bailey’s ecoregions and shows the locations of TM scenes
used in regression  modeling. Ecosystems 3 15B  and 3 15C
are illustrated by red text in figure 4 as representative of
part i t ioning effectiveness in two adjacent ecoregions.
Random stat is t ical  sampling tes ts  of  the var iabi l i ty  of  the
J-M divergence test  results  confirm the results  of  the
part i t ioning tests  based on the completely enumerated

population (Cooke 1997). Figure 5 depicts the improvement
partitioning makes in woody and nonwoody  spectral class
separability. Figure 6 displays results of the 1 -percent
random stat is t ical  tes ts  of  var iabi l i ty  in  the J-M distance test
for Bailey’s ecoregions 3 15B  and 32 1 A.

Bailey’s ecoregions also were found to be more useful than
Omernik’s system in separating mesquite (fig. 7). These
resul ts  reveal  the importance of  Bailey’s  inclusion of  a
climatic variable, which may account for the east-west
climatic gradient that impacts plant-community distribution
in Texas (Norwine and Greegor 1983).

To complete labeling for TM classifications, the team
acquired land-cover information from several sources,
including extensive natural  color video data and National
Aerial Photography Program (NAPP) stereo pairs within
each TM scene. The Texas Parks and Wildlife Department
supplied hard-copy maps and digi tal  Geographic
Information System (GIS) files of the “Vegetation Types of
Texas.” The team is still seeking analysts who have
extensive knowledge of  the plant  communit ies  and
ecosystem processes in the study area.

Stepwise  variable selection procedures were used, and tests
of number, size, and location of calibration windows were
performed. These tests substantiated the work of Mayaux
and Lambin  ( 1995), which indicates only marginal
improvements in models using windows larger than 13 by 13
pixels.

Choice of a percent forest-canopy threshold remains a major
concern in west Texas and west Oklahoma. Initial efforts
have concentrated on differentiating woody from nonwoody
vegetation. It is likely that field crews will be needed for
determining which woody vegetation classes represent forest
as defined by the Forest  Service.

Phase IV--Future Modeling Improvements

Data for inventoried areas,  which have been published in
FIA  reports and the RPA, are in agreement in most States
(table 1) and indicate extremely high agreement for the areas
inventoried by field crews. For prediction of forest area in
regions of  the United States where FIA field inventory data
exist, correction of regression models by field data may be
possible.  However,  analysts  should use caution in
developing correction factors;  those comparing f ield data
with remotely sensed data should only be used when the data
are gathered at the same time. Ideally, the data should be
collected in the same calendar year. Forest Inventory
Analysis  survey cycles should be taken into considerat ion
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when the described modeling techniques are used for
predicting forest  area.  Advanced Very High Resolution
Kadiometer and TM imagery should be contemporaneous
wi th  field inventor ies .

If data are collected at nearly the same time. correction
factors can be used to make midcycle  updates of Sorest area
using the modeling methodology alone.  This  would ensure
the best  possible  midcycle  estimates of forest  area using the
AVHRR and TM modeling process. Recalculation of
correction factors should be done during the next combined
FIA field survey and remote sensing modeling study.  If  the
Southern Annual  Forest  Inventory System (SAFIS) were
implemented in all 13 Southern States, the S-year
completion cycle for each State would further facilitate
calculation of those correction factors.

roc~~ures~~~~Accuracy  assessment
of classifications of AVHRR data for forest  area and forest
type employs the technique of  cross val idat ion.  Calibrat ion
windows of the TM imagery that are used for modeling are
considered as samples drawn without replacement.
Windows from other regions of the TM data,  which were not
used for modeling, are used to test  the model’s performance.
R-squared values indicate the performance of a model over

an ecoregion and indirectly indicate the accuracy of the
modeling results .  Other sources of data may also be used
for accuracy comparisons.

To test  classification accuracy in estimating forest  area,
Lannom  and others ( 1995) compared interpreted  aerial
photography with AVHRR classifications. Estimates made
by photo interpreters  did not  differ  s ignif icant ly from those
made through analysis  of  AVHRR data within cal ibrat ion
windows to a 1000-m cell size.  Grayscale images are
created from the AVHRR and TM data within the calibration
windows.  Visual  and quanti tat ive comparisons of  the
grayscale images’ frequency distributions arc indicative of
classifjcation  accuracy. Replication of this procedure in
areas for which both AVHRR and TM imagery arc
available--~-but  not  within the cal ibrat ion windows+ ~~requires
a  combination of  cross val idat ion and grayscale
comparisons.

Because the pixel  size of AVHRR data is  so large and the
spectral mixing of land-cover classes within each 1000-m
pixel may be extensive, field verification of those data is
extremely difficult. However, field verification of TM
classifications,  aerial  photography, and video imagery is
important in validating the results  of TM reference data.

Accurately located FIA plot  data should be used to verify
Landsat  TM classifications and ancil lary data sources that
refine the TM classifications.  Unfortunately,  AVHRRYT’M
modeling efforts are hampered in west Texas and west
Oklahoma by the absence of a f ield-based forest  inventory.

No discussion of error or confidence intervals for estimates
of forest  area and type derived from this  methodology is
presented in this  paper,  nor does i t  imply that  the removal  of
subjective  decisionmaking will improve the accuracy of
estimates.  The methodology does,  however,  reduce
subject ivi ty at  four  of  seven major  decision-making points;
and reduct ion of  subject ivi ty  is  possible  a t  two others .
Although reduced subject ivi ty does not  necessari ly improve
the accuracy of data, a greater degree of repeatability
ensures a more consistent product and facil i tates
comparisons across geographic regions and among data sets .

Large-area mapping projects based on modeling TM and
AVHRR data would benefit from the expertise of remote
sensing special ists  who are familiar  with the landscape and
ecology of an entire FL4 region.
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Accuracy assessment of  AVHRR classif icat ions is  diff icult
using traditional field methods. Nonetheless, field
measurements should be used to verify Landsat  TM
classif icat ions and the ancil lary data used in refining those
classif icat ions.

The f irs t  phase of  sampling design is  based on the forest1
nonforest  interpretation of recent aerial  photography of
temporary plots that  represent about 230 acres (Kelly 199 1 ),
These areas are compatible, and the AVHRR data can be
used to classify the area between temporary plots.  The
AVHRR data are available for about $32 per year; and
temporal  data composites  enable the monitoring of
phenological  changes in land-cover classes over any given
time.

Forest  area est imation procedures are not consistent  among
FIA regions.  Valid comparisons of  the resul ts  of  this
methodology for different geographic areas are
compromised by this  inconsis tency.

Final ly,  what  does or  does not  const i tute  forest  land is  an
issue that  cannot be resolved by remote sensing.  Although
data so gathered can yield information about forest  canopy
spectral  condit ions,  determining forest  area on mult iple-use
lands and within urban, semi-arid, or arid areas is
problematic.
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The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a
remote-sensing team to develop an image-processing methodology  for mapping forest lands
over large geographic areds.  The team has presented a repeatable methodology, which is based
on regression modeling ofAdvanced Very High Resolution Radiometer (AVHRR) and Landsat
Thematic  Mapper (TM) data. It is a methodology that Forest inventory and Analysis (FIA)
survey personnel can implement in any region or area. The term repeatable implies objectivity.
Studies in the conterminous United States, Central America and Mexico, and west Texas and
Oklahoma have provided valuable insights that address the subjective nature  ofsome  ofthe
steps taken in mapping large forest areas. The team has identified seven  such steps. They
have reduced or eliminated subjectivity in four of the steps and identified two steps in which
objectivity can be enhanced.

Keywords: AVHRR, ecoregions, FIA, Landsat,  regression modeling, remote sensing.
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